
Transpilation
From a SQL dialect to another

Florent JARDIN, Étienne BERSAC

March 13, 2024

1

Who are we?
 Marmotte 🥔. Prêt à livrer ! code ⛳🗑

 Database inspired, powered by passion and curiosity
@bersace
@fljdin

2

https://gitlab.com/bersace
https://gitlab.com/fljdin

Contents
Transpilation

Concepts
How it works

transqlate
Purpose and objectives
Rewriting engine
Case studies

3

1) Transpilation

4

Lexico-grammatical analysis
A language respects a lexicon and a syntax

Analysis transforms code into tree.
The lexer splits the expression into tokens.
The parser groups the tokens into nodes.

5

Usecase: compiling, interpreting
The basis of all computer languages

Lexical and syntactic validation
Compile source code into machine code

gcc, gc, javac, WebAssembly
Interpreting and executing scripts

shell, perl, python

6

Usecase: IDE, doc
Code editing assistance

Syntax highlighting : tree-sitter, pygments
Code completion : IntelliSense
Code reworking (renaming, extraction)

LSP : Language Server Protocol
Static analysis : golangci-lint, flake8
Documentation: godoc, doxygen, docstring

7

Usecase: code transformation
Reformatting: go fmt, prettier, black, etc.
Minification
Optimization

8

Usecase: transpiler
Converting code from one language to another

Hyphenation: translate + compile
TypeScript, CoffeScript to JavaScript
SASS to CSS
Python 2 to Python 3: pyupgrade
… One SQL dialect to another

9

SQL dialects
Standard ISO/IEC 9075-1:2023
Historical syntaxes, prior to the standard
Interpretation or extension of the standard: NULL
Own functions and system catalogs

SELECT `price` * IFNULL(`discount`, 1) FROM `products`; -- MySQL

SELECT [Price] * ISNULL([Discount], 1) FROM [Products]; -- SQL Server

SELECT "PRICE" * NVL("DISCOUNT", 1) FROM "PRODUCTS"; -- Oracle

SELECT "price" * COALESCE("discount", 1) FROM "products"; -- PostgreSQL

10

2) transqlate
Our new contribution. ⚠ Alpha ⚠
Target dialect: PostgreSQL
CLI & API Go
Based on parsing

11

Requirements
Transpile arbitrary SQL code
Extensive code rewriting
Preserve indentations, breaks and comments
Simplicity of implementation

12

Out of consideration
Performance
Interpretation and validation
Query optimization

13

Validity constraints
Presumption of input validity
Rewritten code must be grammatically valid
But not necessarily compatible (until manual review)

14

Reliability constraints
Error handling
Incomplete, impossible or ambiguous translation
Lost in translation
Precise indication of error code
Help teams to take over manually

15

Preservation constraints
Indentations
Breaks
Comments

16

Rewriting engine
Transpilation at different stages of analysis

Token rewriting
Node or branch rewriting
Rewriting the whole tree

17

Rewriting tokens
The Token structure is retained:

The type
Keyword, Identifier, Operator, String, …

The original code, as written
SELECT, "id", where, employees

The standardized code
SELECT, ID, WHERE, EMPLOYEES

Blank characters: space, comments before and a�er

18

Rewriting identifiers
Default: lowercase identifiers Objects are renamed to lowercase

on migration.

becomes

SELECT ID, UPPER("Name"), "PHONE" FROM Contacts; -- Oracle

SELECT id, upper("Name"), phone FROM contacts; -- PostgreSQL

19

Rewriting identifiers
If objects are migrated without renaming. Preserve Oracle case

with --preserve-case:

becomes

SELECT ID, UPPER("Name"), "PHONE" FROM Contacts;

SELECT "ID", upper("Name"), "PHONE" FROM "CONTACTS";

20

Rewriting nodes
Each node of the tree contains:

the tokens for writing the expression
child nodes

A rule must:
test that a node must be translated
apply the translation heuristic

21

Rewriting nodes
Oracle: SELECT SYSDATE FROM DUAL

ast.Select:

 Select: Keyword "SELECT"

 List ast.Leaf: Identifier "SYSDATE"

 From ast.From:

 From: Keyword "FROM"

 Tables ast.Grouping:

 Items:

 - ast.Leaf: Identifier "DUAL"

Postgres: SELECT LOCALTIMESTAMP

ast.Select:

 Select: Keyword "SELECT"

 List ast.Leaf: Identifier "LOCALTIMESTAMP"

22

Example : TRUNC

becomes

-- Oracle

SELECT TRUNC(HIRED_DATE, 'Y') FROM EMPLOYEES;

-- PostgreSQL

SELECT date_trunc('year', hired_date) FROM employees;

23

Translation error

becomes

-- Oracle

SELECT TRUNC(HIRED_DATE, DATEFMT) FROM EMPLOYEES;

-- PostgreSQL

-- TRANSLATION ERROR at +1:8: not a literal format rule="replace trunc()"

SELECT date_trunc(datefmt, hired_date) FROM employees;

24

Simple outer join

becomes

SELECT *

FROM employees, departements

WHERE employees.deparment_id = departments.id (+);

-- PostgreSQL

SELECT *

FROM employees

LEFT OUTER JOIN departments ON employees.department_id = departments.id;

25

SELECT * with join inversion

becomes

-- Oracle

SELECT * FROM employees, jobs

WHERE jobs.id = employees.job_id(+);

-- PostgreSQL

SELECT * FROM employees

RIGHT OUTER JOIN jobs ON jobs.id = employees.job_id;

26

Composite join

becomes

-- Oracle

SELECT DISTINCT job.name

FROM employees, jobs

WHERE employees.job_id(+) = jobs.id AND employees.salary(+) > 2000;

-- PostgreSQL

SELECT DISTINCT job.name

FROM jobs

LEFT OUTER JOIN employees ON employees.job_id = jobs.id AND employees.salary > 2000;

27

Hierarchical join

becomes

-- Oracle

SELECT empno, ename, job, mgr

FROM emp

START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

-- PostgreSQL

WITH RECURSIVE hierarchy(empno, ename, job, mgr) AS (

 SELECT empno, ename, job, mgr

 FROM emp

 WHERE mgr IS NULL

 UNION ALL

 SELECT recursion.empno, recursion.ename, recursion.job, recursion.mgr

 FROM emp AS recursion

 JOIN hierarchy AS "prior"

 ON "prior".empno = recursion.mgr

)

SELECT empno, ename, job, mgr

 FROM hierarchy AS emp

28

Rewriting the entire tree
Useful for re-indenting code
By default, naive copy of indentation
--pretty applies Simon HOLYWELL style

sqlstyle.guide

SELECT r.last_name, max(year(championship_date))

 FROM champions AS c

 JOIN riders AS r ON c.last_name = r.last_name

 WHERE c.confirmed = 'Y'

 AND riders.age > 30

29

https://www.sqlstyle.guide/

Conclusion
Simple and powerful
Reliable
A contribution to the migration ecosystem
Joins the familyDalibo Labs

gitlab.com/dalibo/transqlate

30

https://labs.dalibo.com/
https://gitlab.com/dalibo/transqlate

Any questions?

31

