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Who are we?
 Marmotte 🥔. Prêt à livrer ! code ⛳🗑

 Database inspired, powered by passion and curiosity
@bersace
@fljdin
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https://gitlab.com/bersace
https://gitlab.com/fljdin
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1) Transpilation
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Lexico-grammatical analysis
A language respects a lexicon and a syntax

Analysis transforms code into tree.
The lexer splits the expression into tokens.
The parser groups the tokens into nodes.
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Usecase: compiling, interpreting
The basis of all computer languages

Lexical and syntactic validation
Compile source code into machine code

gcc, gc, javac, WebAssembly
Interpreting and executing scripts

shell, perl, python
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Usecase: IDE, doc
Code editing assistance

Syntax highlighting : tree-sitter, pygments
Code completion : IntelliSense
Code reworking (renaming, extraction)

LSP : Language Server Protocol
Static analysis : golangci-lint, flake8
Documentation: godoc, doxygen, docstring
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Usecase: code transformation
Reformatting: go fmt, prettier, black, etc.
Minification
Optimization

8



Usecase: transpiler
Converting code from one language to another

Hyphenation: translate + compile
TypeScript, CoffeScript to JavaScript
SASS to CSS
Python 2 to Python 3: pyupgrade
… One SQL dialect to another
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SQL dialects
Standard ISO/IEC 9075-1:2023
Historical syntaxes, prior to the standard
Interpretation or extension of the standard: NULL
Own functions and system catalogs

SELECT `price` * IFNULL(`discount`, 1) FROM `products`;   -- MySQL

SELECT [Price] * ISNULL([Discount], 1) FROM [Products];   -- SQL Server

SELECT "PRICE" * NVL("DISCOUNT", 1) FROM "PRODUCTS";      -- Oracle

SELECT "price" * COALESCE("discount", 1) FROM "products"; -- PostgreSQL
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2) transqlate
Our new contribution. ⚠ Alpha ⚠
Target dialect: PostgreSQL
CLI & API Go
Based on parsing
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Requirements
Transpile arbitrary SQL code
Extensive code rewriting
Preserve indentations, breaks and comments
Simplicity of implementation
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Out of consideration
Performance
Interpretation and validation
Query optimization

13



Validity constraints
Presumption of input validity
Rewritten code must be grammatically valid
But not necessarily compatible (until manual review)
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Reliability constraints
Error handling
Incomplete, impossible or ambiguous translation
Lost in translation
Precise indication of error code
Help teams to take over manually
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Preservation constraints
Indentations
Breaks
Comments
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Rewriting engine
Transpilation at different stages of analysis

Token rewriting
Node or branch rewriting
Rewriting the whole tree
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Rewriting tokens
The Token structure is retained:

The type
Keyword, Identifier, Operator, String, …

The original code, as written
SELECT, "id", where, employees

The standardized code
SELECT, ID, WHERE, EMPLOYEES

Blank characters: space, comments before and a�er
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Rewriting identifiers
Default: lowercase identifiers Objects are renamed to lowercase

on migration.

becomes

SELECT ID, UPPER("Name"), "PHONE" FROM Contacts; -- Oracle

SELECT id, upper("Name"), phone FROM contacts; -- PostgreSQL
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Rewriting identifiers
If objects are migrated without renaming. Preserve Oracle case

with --preserve-case:

becomes

SELECT ID, UPPER("Name"), "PHONE" FROM Contacts;

SELECT "ID", upper("Name"), "PHONE" FROM "CONTACTS";
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Rewriting nodes
Each node of the tree contains:

the tokens for writing the expression
child nodes

A rule must:
test that a node must be translated
apply the translation heuristic
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Rewriting nodes
# Oracle: SELECT SYSDATE FROM DUAL

ast.Select:

  Select: Keyword "SELECT"

  List ast.Leaf: Identifier "SYSDATE"

  From ast.From:

    From: Keyword "FROM"

    Tables ast.Grouping:

      Items:

      - ast.Leaf: Identifier "DUAL"

# Postgres: SELECT LOCALTIMESTAMP

ast.Select:

  Select: Keyword "SELECT"

  List ast.Leaf: Identifier "LOCALTIMESTAMP"
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Example : TRUNC

becomes

-- Oracle

SELECT TRUNC(HIRED_DATE, 'Y') FROM EMPLOYEES; 

-- PostgreSQL

SELECT date_trunc('year', hired_date) FROM employees; 
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Translation error

becomes

-- Oracle

SELECT TRUNC(HIRED_DATE, DATEFMT) FROM EMPLOYEES; 

-- PostgreSQL

-- TRANSLATION ERROR at +1:8: not a literal format rule="replace trunc()"

SELECT date_trunc(datefmt, hired_date) FROM employees;
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Simple outer join

becomes

SELECT *

FROM employees, departements

WHERE employees.deparment_id = departments.id (+);

-- PostgreSQL

SELECT *

FROM employees

LEFT OUTER JOIN departments ON employees.department_id = departments.id;
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SELECT * with join inversion

becomes

-- Oracle

SELECT * FROM employees, jobs

WHERE jobs.id = employees.job_id(+);

-- PostgreSQL

SELECT * FROM employees

RIGHT OUTER JOIN jobs ON jobs.id = employees.job_id;
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Composite join

becomes

-- Oracle

SELECT DISTINCT job.name

FROM employees, jobs

WHERE employees.job_id(+) = jobs.id AND employees.salary(+) > 2000;

-- PostgreSQL

SELECT DISTINCT job.name

FROM jobs

LEFT OUTER JOIN employees ON employees.job_id = jobs.id AND employees.salary > 2000;
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Hierarchical join

becomes

-- Oracle

SELECT empno, ename, job, mgr

FROM emp

START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

-- PostgreSQL

WITH RECURSIVE hierarchy(empno, ename, job, mgr) AS (

    SELECT empno, ename, job, mgr

      FROM emp

     WHERE mgr IS NULL

     UNION ALL

    SELECT recursion.empno, recursion.ename, recursion.job, recursion.mgr

      FROM emp AS recursion

      JOIN hierarchy AS "prior"

        ON "prior".empno = recursion.mgr

)

SELECT empno, ename, job, mgr

  FROM hierarchy AS emp
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Rewriting the entire tree
Useful for re-indenting code
By default, naive copy of indentation
--pretty applies Simon HOLYWELL style

sqlstyle.guide

SELECT r.last_name, max(year(championship_date))

  FROM champions AS c

  JOIN riders AS r ON c.last_name = r.last_name

 WHERE c.confirmed = 'Y'

   AND riders.age > 30
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https://www.sqlstyle.guide/


Conclusion
Simple and powerful
Reliable
A contribution to the migration ecosystem
Joins the  familyDalibo Labs

gitlab.com/dalibo/transqlate
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https://labs.dalibo.com/
https://gitlab.com/dalibo/transqlate


Any questions?
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